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Predictive Creep Response of Linear 
Viscoelastic Graphite/Epoxy Composites Using 

the Laplace Transform Method 
A. Rivera.Dorninguez and W.M. Jordan 

In this research project, creep and stress relaxation tests were run on angle-ply layups of a medium tough- 
ness graphite/epoxy system (Hexcel T3T145/F155). The creep and relaxation responses were represented 
with Maxwell/Kelvin-type models. Using a convolution integral and the Laplace transform method, a pre- 
dictive creep response formulation was developed following a principle of virtual equilibrium state. Pre- 
dictions of normalized creep compliance responses from short relaxation tests (based on a pseudo-elastic 
complementary approach) were compared to normal creep compliance values. As the fiber angles in- 
creased (moving farther away from the direction of the applied load), the difference between the compli- 
ances increased. This implies that, as toughness is increased, the accuracy of the pseudo-elastic method 
decreases. With the newer, tougher, resin systems, complementary approaches similar to the one used in 
this paper may be required. 

1 Background 

VISCOELASTIC materials display characteristics of  elastic solids 
and viscous fluids. [1] They undergo a time-dependent and re- 
coverable deformation process when they are under stress. The 
process is so slow that the viscoelastic response does not effect 
dynamic or inertial forces. Therefore, the material may be as- 
sumed to be under a quasi-static state. 

This phenomenon varies according to the chemical compo- 
sition and microstructure of the materials. Primary bonds such 
as ionic, covalent, and metallic bonds provide a stable material 
configuration. Secondary bonds, such as induced dipoles, polar 
molecules, molecular bridge, and coulombic forces, are weaker 
and more sensitive to the influence of  physical forces. [2] 

1.1 Superposition Integral 

Because the viscoelastic response is a time-dependent proc- 
ess, viscoelastic formulae must obey hereditary integrity func- 
tions. For the particular case where the homogeneity and linear 
superposition conditions are satisfied, the function is shown 
as:[ 3] 

t 

F(t) = S F,~(t- x) dl d'c [ 1 ] 

In the above equation, FQ(t - x) is the response to an arbi- 
trary input function I = Q ( T -  x). Such integral is referred to as 
a hereditary integral because the linear functional F(t) depends 
on the history of the input l(t). If the states of stress and strain 
are the engineering variables of interest, Eq 1 becomes Eq 2a 
and 2b shown below: [4] 
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S t de dx [2a] ~(t) = E ( t -  x) dx 

S t dt~ dz [2b] e(t) = D ( t -  x) d'c 

In the above integrals, the engineering relaxation modulus 
E(t - x) and the engineering creep compliance D(t - x) replace 
FQ(t-  x), respectively. These equations are based on the princi- 
ple that the effects of sequential changes in stress or strain are 
additive. These equations are linear and are known as the super- 
position integrals. 

1.2 Correspondence Principle 

The correspondence principle of viscoelasticity states that 
at a fixed time, those displacement states which satisfy the 
force balance conditions give quasi-stationary functions simi- 
lar to the constitutive relations of elasticity. The counterpart of  
this principle states that at a fixed time, those self-balancing 
force states which satisfy the strain-displacement conditions 
give quasi-stationary functions similar to the complementary 
constitutive relations of elasticity. This principle comes from 
the fact that the strain energy must always satisfy both the geo- 
metric compatibility and natural continuity conditions. The 
Laplace-transforms of  the governing equations of viscoelastic- 
ity are analogous to the governing field equations of  elasticity. 

2 One-Dimensional Linear Viscoelastic 
Formulation of Dead Materials 

The mutual correspondence between the stress and strain 
states in viscoelasticity depends on the material constitution. If  
the material behaves linearly, the hereditary function that corre- 
lates both states is a linear functional according to Eq 2. For a 
dead material, that is one unstressed at time zero, the lower lim- 
its of the integrals are replaced by zero. TM 
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2 . 1  Limi t ing  C o n s t a n t  Values  

When a material is loaded at time t = to, the creep response 
attains an extremum condition at that time. By using the Leib- 
nitz's integral formula, {5] it can be shown that the derivative 
term of Eq 2a becomes Eq 3: 

E ( t -  ~) ~ = 0 for t = t o = 0 [3] 
dx 

This implies the rate of change of the engineering creep 
compliance is zero at t = 0. Similarly, Eq 2b can be used to con- 
clude the rate of  change of  the engineering relaxation modulus 
is also zero at that time. These extremum values are defined as 
Do and E0. For a material behaving like a viscoelastic solid, 
when time approaches infinite, the engineering creep compli- 
ance and the engineering relaxation modulus attain extremum 
conditions defined as D~ and E~. With the help of these limit- 
ing values, the relaxation modulus and creep compliance may 
be represented in a normalized form as Eq 4a and 4b: 

E(t) - E 
0(t) - - -  [4a] 

E 0 - E 

D(t) - D O 
rl(t) = 

D - D O 
[4b] 

2.2 Laplace Operation 

The one-dimensional linear viscoelastic constitutive equa- 
tion of a dead material can be transformed by using the Laplace 
operator[5] to get Eq 5: 

- 1 
D(s) E(s) s2 [51 

In this equation, s is the Laplace operation variable and D(s) 
and E(s) are the Laplace transform of the engineering creep 
compliance and the engineering relaxation modulus, respec- 
tively. Similarly, Eq 4 can be transformed with the Laplace op- 
erator, solved in terms of E(s) and D(s), and combined with the 
transformed integral of Eq 5 to obtain Eq 6: 

1 = + ( D  - D o )  r l ( s )  + ( E  o - E )  0 ( s )  [61 

The terms E(t) and D(t) are not independent properties, and 
unique relations among the limiting constant values D o and E o, 
and D.~ and E~ must exist. These relations [61 are shown below 
in Eq7 and8: 

DoE 0 = 1 [71 

D , o E  = 1 [81 

After considering the conditions of Eq 7 and 8 and solving 
for rl(S), Eq 6 turns into the following transformed equation: 

1 - s 0 ( s )  

"q(S) = [(1 - re)'] 2 [9] 
s + l - - i s  O(s) 

L r e J  

The term re is defined as the degree of pliabilityl6] in Eq 10: 

E D O 
[10] 

re - E 0 - D 

Equation 9 can be evaluated under two special conditions, 
one for which re approaches unity and the other for which re is 
much smaller than one. If the pliability is close to one, that 
means that E 0 and E~ are close to the same value. Considering 
the pliability to be close to one, the inverse of the Laplace op- 
erator transforms Eq 9 to form Eq 11: 

rl(t) = 1 - 0(t) [11] 

This equation reveals that if the material behaves elastically 
rigid, both viscoelastic functions are always complementary. 
On the other hand, the case for which the material is highly pli- 
able, for re << 1, Eq 9 is closely equivalent to Eq 12 shown be- 
low: 

re[1 - s 0(s)] 
rl(s) = [12] 

sir e + s 0(s)] 

For the particular case where 0(t) = exp(-at) ,  that is, for a 
classical Maxwell/Kelvin model function, [6] the Laplace in- 
verse [5] is shown in Eq 13: 

rl(t) = 1 - e -w [13] 

where 

I t = a r e  [14] 

Because r e is less than one, Eq 13 and 14 show that the time 
constant of the creep function is bigger than the time constant 
of the relaxation function. This means, in practical purposes, 
that creep tests last longer to attain compliant equilibrium than 
relaxation tests. The final conclusion applies for general values 
of r e < 1 and other model functions, and it gives the basis to con- 
clude the following principle. Given two equivalent viscoelas- 
tic systems initially stressed to the same strain energy level, the 
material extension caused by fixed deformation will more 
quickly attain a virtual equilibrium state than will the one with 
the fixed force balance condition. 

The patterns of the viscoelastic response depend on the ma- 
terial constitution and microstructure. They obey the superpo- 
sition integral if the material has an admissible strain and com- 
plementary energy function. This implies a continuous strain 
function. Equation 9 may be used to express the transformed 
normalized creep function by the transformed normalized re- 
laxation function. After applying the inverse of  the Laplace 
transform operator, this results in Eq 15: 

TI (t) =2-1 [ (1-~e)]~_ 2 [151 

+ l - - I s  0(s) 
L re ] 

If  the degree of pliability approaches the ideal value of  one, 
the material behaves like a pure elastic solid and not like a vis- 
coelastic material. Then the solution of Eq 15 is the same as the 
elastic complementary solution (Eq 11). In the case for which 
the viscoelastic solid is highly pliable, the relaxation modulus 
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exhibits a faster viscoelastic response than does the creep com- 
pliance. Intermediate generic solutions are expected to occur 
for any fractional value of r e . From the above principle of vir- 
tual equilibrium state, Eq 15 serves to predict the creep re- 
sponse of  a highly pliable viscoelastic solid from short relaxa- 
tion tests. 

2.3 Phys ica l  Models  o f  Mater ial  Behav ior  

Although the above equations describe how the relaxation 
modulus and creep compliance are related to each other, they 
do not describe the actual shapes of the modulus and creep 
curves. Frequently, experimental data are curve fit to what are 
called Maxwell/Kelvin equations. [3-61 These models represent 
the material behavior using the responses of  springs and dash- 
pots. A Maxwell model represents the material as if it were a 
spring and dashpot arranged in series. With the spring, stress is 
proportional to strain. With the dashpot, stress is proportional 
to the strain rate. A Kelvin model is one in which the spring and 
dashpot are arranged in parallel. The Maxwell/Kelvin models 
used in this data reduction are those in which a Maxwell ele- 
ment and Kelvin element are arranged in series. 

3 Experimental Procedure 

3.1 Mater ia l  Used 

The graphite/epoxy prepreg used was the Hexcel 
T3T145/F] 55 system. It was fabricated into 10- by 6-in. panels 
and cured according to the manufacturer 's suggested cure cy- 
cle. [7,8] The F155 resin is a medium crosslink density, medium 
toughness resin.[9,10} This is a commercial system that has been 
studied by several researchers. [7-I~ Its toughness has been in- 
creased by the presence of  small rubber particle additions. [9,101 
The rubber particles occupy 5.6% (by volume) of the resin. [l~ 
The panel layups were balanced and symmetric with the fol- 
lowing stacking sequence: 

[X2 /-X4 / X2] S 

In  this study, X could have values o f  0, 30, 45, or 60 ~ The to- 
tal number of  plies in each laminate was 16. 

3.2 M e c h a n i c a l  Test Procedure  

Two different types of mechanical tests were performed dur- 
ing this project. They were creep tests and stress relaxation 
tests. These tests were conducted on a model 810 MTS tensile 
machine according to ASTM standard D638. All mechanical 
tests were done at room temperature, which in this laboratory 
was nominally 24 ~ The data were recorded on an IBM per- 
sonal computer using a Keithley Series 500 system. 

Viscoelastic data were obtained from the graphite-epoxy 
composite laminates tested in either constant load (for creep 
tests) or constant displacement (for relaxation tests) using the 
same MTS system. This allowed for a comparison of the creep 
and relaxation responses for the different angle-ply laminates. 
All  tests ran for 15 min. 

The samples were strain-gaged so that the strain could be de- 
termined accurately. Micro-Measurements CEA resistance- 
type strain gages were used. They are a general-purpose strain 

gage capable of measuring up to 3% strain (in either tension or 
compression). The creep tests on angle-ply samples were 
loaded up to approximately 60% of their ultimate tensile 
strength. The relaxation tests were also loaded up to approxi- 
mately 60% of their ultimate tensile strength. The displacement 
that corresponds to this load was maintained during the relaxa- 
tion test. 

3 .3  Data Reduc t ion  

From the creep/relaxation data, samples were selected for 
the following times: l ,  10, 90, 300, and 900 seconds. This al- 
lowed for a stress-strain space, isochronous correlation. The 
data set was reduced to a characteristic value for each sampling 
time by using the least square linear regression with origin col- 
located (LSLROC) method. The data had an average correla- 
tion factor of approximately 0.98.[6] 

These reduced data were curved-fitted to a Maxwell/Kelvin 
model function by using the LSLR method. This is documented 
by Ref 6. The function was determined for each laminate. Vir- 
tual limiting values were obtained by evaluating it at zero time 
and infinite time. The above approach was used for relaxation 
as well as for creep data, and they were compared according 
to Eq 11. 

4 Results and Conclusions 

Figures 1 through 4 show two different versions of the nor- 
malized creep compliance for the material system studied in 
this project. The pseudo-elastic results are those obtained by Eq 
1 l ,  that is, the complement of  the normalized relaxation modu- 
lus. This equation assumed that the pliability (re) is close to one. 
The results labeled "normal creep" are those determined di- 
rectly from the creep data. 

The complementary solution, developed from the viscoelas- 
tic formulation, presents an alternate way to compare the vis- 
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Fig. 1 Creep of T3T 145/F155 longitudinal laminate. Normal- 
ized creep compliance is plotted virsus the logarithm of time 
using two different calculation methods. The normalized 
pseudo-elastic compliance was calculated using the comple- 
ment of the normalized relaxation modulus. 
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Fig. 2 Creep of T3T145/F155 laminate using a 30 ~ angle-ply 
layup. Normalized creep compliance is plotted versus the loga- 
rithm of time using two different calculation methods. The nor- 
malized pseudo-elastic compliance was calculated using the 
complement of the normalized relaxation modulus. 
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Fig. 3 Creep of T3T 145/F155 laminate using a 45 ~ angle-ply 
layup. Normalized creep compliance is plotted versus the loga- 
rithm of time using two different calculation methods. The nor- 
malized pseudo-elastic compliance was calculated using the 
complement of the normalized relaxation modulus. 
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Fig. 4 Creep of T3T 145/F 155 laminate using a 60 ~ angle-ply 
layup. Normalized creep compliance is plotted versus the loga- 
rithm of time using two different calculation methods. The nor- 
malized pseudo-elastic compliance was calculated using the 
complement of the normalized relaxation modulus. 

Ef fec t  o f  F iber  O r i en ta t i on  

~ 0 . 9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

= 0 . 8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ;d . . . . .  ;;::::::: . . . . . . . . . . .  r  .................... 

; 0.6 ......................... -- .-~' : : :  ........................ , , ' ~  ..................................... ==..' = (  . ~ . . w  

== 0.s  . . . . . . . . . . . . . . . . . . .  -:.~-': ........................ . : : .-~-~ .................................................. 

0 4  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .  - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

" 0.3 ......... 73- ~: ..................... :',i;-,'~:-:~ ................................................................ 
0 . 2 -  ~,~'~ ........................ -::,~ ...................................................................... : .... 

~z o., ............ : :~ ;~ ' ; ; ' : :E: :  ................................................................................ 
o 

lO lOO lOOO 
Time (seconds) 

[ --~-- Longitudinal--m-- 30degrees "-~*-- 45degrees ""~-- 60degrees I 

Fig. 5 Normalized creep compliance of T3T145/F155 lami- 
nates using angle-ply layups with 0, 30, 45, and 60 ~ angles. 

coelastic responses of creep and relaxation tests. The results of 
the composite laminates vary considerably according to the fi- 
ber orientation. For longitudinal laminates, the pseudo-elastic 
solution was close to the normal creep solution, after a period of 
only 10 seconds duration. This is shown in Fig. 1. The deviation 
of the creep response from the pseudo-elastic complementary 
solution increases when the fibers are at an angle to the applied 
load. For the +30, +45, and +60 ~ laminates, the results using 
these two methods differed even more significantly. They only 
converged after a period of up to 1000 seconds had elapsed. 
These are depicted in Fig. 2, 3, and 4. The material behaves 
more elastically as the fiber orientation angle decreases, with 
an optimal case for which the fiber angle is zero. 

This result of increasing viscoelasticity as the angle moves 
away form zero degrees is in accord with previous results found 
by Jordan e t  al. [7, 9] They found that as the fibers move away 
from a unidirectional orientation, the resin is allowed to deform 
more, which results in a material that is less elastic. 

Figures 1 through 4 illustrate that the normalized creep re- 
sponse curves are always below the pseudo-elastic comple- 
mentary curves. The pseudo-elastic results are the complemen- 
tary part of the normalized relaxation curves. This means that 
the relaxation response reaches a virtual equilibrium state 
faster than does the creep response. This reinforces the princi- 
ple of the virtual equilibrium state of viscoelasticity. However, 
further analytical schemes must be developed to model predic- 
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five creep responses to explore the natural effects accompanied 
between the creep compliance and the relaxation modulus for 
different degree of  pliability (re). 

Figure 5 shows the normalized creep results for the four 
layups studied in this project. The orientation that was most off- 
axis was the one that had the lowest compliance. This is to be 
expected, because there is less fiber resistance to deformation 
at this angle. The off-axis layups not only have lower creep 
compliances, but they also respond more slowly than the layups 
that are aligned more closely with the load direction. 

The approach used in this project shows the validity of using 
relatively short relaxation tests to predict the creep response of  
a medium toughness epoxy-based composite material. As 
tougher resins are developed, they will behave less and less in 
an elastic fashion. As was shown with the +60 ~ laminates (the 
toughest orientation tested in this study), the usefulness of the 
pseudo-elastic method diminishes with increased toughness. 
With these tougher materials, methods such as the ones based 
on relaxation tests described above will be required. For these 
materials, the pliability (re) may be much less than one, and Eq 
15 must be used. 
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